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The concentration dependences of the shear-viscosity coefficient of a fluid, representing a binary mixture of
components with molecules of approximately equal sizes, in narrow slot-like pores filled to a different degree
(from a rarefied gas to a liquid) have been theoretically investigated with the use of a lattice-gas model ac-
counting for the characteristic volume of atoms and interactions between them in the quasichemical approxi-
mation. This model allows one to determine the self-consistent equilibrium characteristics of a vapor-liquid
system and the shear-viscosity coefficients of molecules with the use of a unique set of energy parameters.
The influence of the activation energy of the surface migration of molecules on the local coefficients of vis-
cosity has been considered. A molecular interpretation of the sliding friction of a fluid near the walls of pores
has been given; this effect was explained by the surface migration of the mixture components.

The transport of molecules in porous bodies determines the dynamic characteristics of gas and liquid flows in
them. The sizes of the pores of disperse materials determine the catalytic, adsorption, and membrane processes occur-
ring in them as well as the processes of their cleaning, wetting, impregnation, and drying [1–6]. The maximum width
of narrow pores is equal to D10 nm for a short-range, nonspecific, Lennard-Jones interaction potential between mole-
cules (6–12), which corresponds to 25–30 monolayers [7–9]. This value was obtained from analysis of the conditions
under which the surface potential influences the capillary condensation (for a long-range interaction potential, it in-
creases with increase in the radius of the potential).

In a narrow pore, the surface potential significantly influences the mobility of molecules and their distribution
over the cross section of the pore. All transport characteristics of an adsorbate in such pores differ from those in the
bulk of vapor and liquid phases. Among the most important dynamic characteristics of a substance is its shear viscosity.
It should be noted that the Navier–Stokes equation cannot be used for narrow pores. In this case, kinetic transport equa-
tions for condensed media should be used. For organization and simulation of flows in narrow pores, it is necessary
to know the transport characteristics of the system of these pores at the molecular level. In [10, 11], a new molecular
approach to representation of flows in narrow pores of one-component fluids with densities and temperatures varying
in wide ranges has been proposed. It is based on the simplest molecular model of condensed media — the lattice-gas
model that accounts for the characteristic volume of molecules and their interaction with each other [12, 13]. This
model can be used for fluids with concentrations changing in a wide range (from the gaseous to the liquid state) at
widely varying temperatures, including the critical one, which allows one to investigate the dynamics of a fluid flow
in the case of capillary condensation. Closed equations and expressions for the transport coefficient were constructed
using the quasichemical approximation with account for the intermolecular interactions and short-range effects.

The processes occurring in mixtures of gases and liquids are very complex, which makes the study of the
concentration dependences of the transfer coefficients in narrow pores of dense gas and liquid mixtures difficult. In the
present work, we attempted to investigate the concentration dependences of the shear-viscosity coefficients of a binary
mixture in narrow pores filled to a different degree (from dense gases to liquids) with the use of the lattice-gas model
[12]. Investigations on generalization of the equations for a one-component fluid to multicomponent mixtures were
begun in [14].

A new approach takes a much shorter time for its realization and provides a good agreement with molecular-
dynamic calculations of the self-diffusion in one-component fluids [15–17]. The phase diagrams constructed for one-

Journal of Engineering Physics and Thermophysics, Vol. 79, No. 1, 2006

L. Ya. Karpov Physicochemical Scientific-Research Institute, 10 Vorontsovo Pole Str., Moscow, 105064, Rus-
sia; email: tovbin@cc.nifhi.ac.ru. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 79, No. 1, pp. 121–132, Janu-
ary–February, 2006. Original article submitted October 13, 2004.

1062-0125/06/7901-0125 2006 Springer Science+Business Media, Inc. 125



component, narrow-pore fluids with the use of the indicated model agree well with the diagrams obtained in [18, 19]
when the viscosity coefficients of these fluids [20] are determined by the Monte Carlo method and the method of mo-
lecular dynamics. To calculate the shear viscosity of a mixture in a pore, it is necessary to know the equilibrium local
distributions of mixture components in the cross section of the pore, which depends substantially on the adsorbent–ad-
sorbate interaction potential and the width of the pore.

Qualitative analysis of the dependence of the viscosity of a binary mixture on its concentration was per-
formed, as in [14], on the assumption that the molecules of the mixture components have a spherical form and ap-
proximately equal sizes. Strictly speaking, this assumption limits the application of the results obtained only to isotopic
mixtures because different molecules have different sizes. However, this approximation allows one to obtain valid re-
sults for mixtures of molecules with close sizes and, therefore, can be used for solid solutions [21, 22] (even though
the lattice-gas model is suitable for mixtures of different-size molecules).

In the present work, we theoretically investigated the concentration dependences of the shear-viscosity coeffi-
cients of molecules of different binary mixtures with pores filled to a different degree (from a rarefied gas to a liquid)
and considered the role of the interaction potential between a molecule and the wall of a slot-like pore and the mo-
lecular nature of the sliding friction of a fluid near the wall of this pore.

Model. In the lattice-gas model [14, 23], the volume of a slot-like pore Vp is divided into monoatomic layers
of linear size (width) λ parallel to the wall of the pore. Each layer is divided into cells (adsorption centers or sites)
with a volume equal to the volume of a particle v0 = λ3, which excludes their double filling with different molecules.
In this case, Vp = Nv0. The number of nearest lattice sites will be denoted by z. Only one particle can be located at
each site: an i-type (ith) molecule (with a center of mass located inside a cell) or a vacancy v. The index i denotes
the number of a mixture component. The number of different occupation states of any site of a system will be denoted
by the index s, i.e., the number of components will be equal to s − 1.

It is usually assumed that the concentration of molecules is equal to the number of these molecules Ni in a

unit volume: Ci = Ni
 ⁄ Vp. In the lattice-gas model, the concentration of a component of a fluid is characterized by the

quantity θi = Ni/N, equal to the ratio between the number of actual particles in any volume and the maximum possible

number of close-packed particles in the same volume. Then θi = Civ0. The local density of ith particles in a cell item-

ized under No. f (fth cell) will be denoted by θf
i and it will be assumed that ∑ 

i=1

s−1

θf
i + θf

v = 1. The average partial con-

centration of the fluid θi is determined through the local concentrations as θi = ∑ 

f=1

N

Ff θf 
i  ⁄ N and the average complete

filling of a pore is determined as θ = ∑ 

i=1

s−1

θf
i . By the symbol 


P



 B P1, ..., Ps−1, we will denote the total set of partial

pressures of mixture components Pi, 1 ≤ i ≤ s − 1.

Each fth cell is characterized by the energy of interaction Qf
i of ith molecules with its walls and by the Henry

constant af
i, by which the lattice sites can be divided into groups with equal properties. The number of such groups

will be denoted by t. If the walls of a chink-like pore are uniform, all sites of one layer are equivalent; therefore, the
number of an fth layer is identical to the number of the site found in it. For an even number of monolayers, t = H/2,

and t = (H + 1)/2 for an odd number of monolayers. The local Henry constant af
i = af

i0 exp (βQf
i), where af

i0 =

βFi/Fi
0; Qf

i = ui(f) + ui(H − f + 1), 1 ≤ f ≤ t; ui(f) = εi
 ⁄ f 3 for the part of the Mie potential (3–9) accounting for attraction

[24]. The fraction of sites Ff in an fth layer is equal to 2/H for an even H and an odd H at 1 ≤ f ≤ t − 1, and Ff =

1/H at f = t. The normalizing condition for sites of different types has the form ∑ 

f=1

t

Ff  = 1.
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To calculate the average partial adsorption isotherms θi(


P



) and local fillings θf 

i (

P



) of different adsorption

centers, we used the system of equations derived in [14, 23], in which the energy inhomogeneity of lattice sites and
the interaction between molecules are taken into account:

θi (


P



) = ∑ 

f=1

t

Ff θf
i
 (P



) ,   af

i
 Pi = θf

i
 Λf

i ⁄ θf
v
 , (1)

Λf
i
 = ∏ 

r
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g







1 + ∑ 

j=1

s−1

xfg
ij

 (r) tfg
ij

 (r)







zfg(r)

 ,   xfg
ij

 (r) = exp (− βεfg
ij

 (r)) − 1 ,

where the function Λf
i is calculated in the quasichemical approximation. In formulas (1), allowance is made for the

layer distribution of different sites in slot-like pores. It is assumed that the parameter εfg
ij (r) of lateral interaction be-

tween the ith and jth neighboring molecules separated by a distance equal to the radius r of a coordination sphere is
a function of the temperature and the local composition of the substance around the fth and gth sites and that the in-
teractions with vacancies (i, j = s) are equal to zero. The index g takes values corresponding to all neighbors zf(r) lo-
cated at a distance r ≤ Rm from the fth site inside a pore.

The function tfg
ij  = θfg

ij (r)/θf
i defines the conditional probability that the central ith particle from an fth site is

separated from the neighboring jth particle from a gth site by a distance r; the function θfg
ij (r) defines the analogous

total probability. For them, the equations θfg
ij (r)θfg

ss(r) = θfg
is(r)θfg

sj(r) exp [−βεfg
ij (r)] are true. These equations are solved

with regard for the following normalizing relations: ∑ 

j=1

s

θfg
ij (r)  = θf

i, ∑ 

i=1

s

θfg
ij (r) = θg

j , and ∑ 

i=1

s

θf
i  = 1. The equilibrium

distribution of particles over different sites θf
i was determined from the system of equations (1) by the Newton itera-

tion method at a given set of 


θ


 or 


P



 values. The accuracy of solving system (1) is not less than 0.1%.

Calculations were carried out for slot-like pores with walls consisting of graphite atoms. One of the compo-
nents of the mixture was argon with constant parameters (Q1

1 = 9.24εArAr at εArAr/k = 119 K), and the properties of
the other component were varied; to the krypton atoms corresponds Q1

2 = 12.17εArKr [24, 25]. The lateral interactions
were determined using the Lennard-Jones potential: εij = 4εij

0[(σij
 ⁄ r)12 − (σij

 ⁄ r)6] at r/σij = 21 ⁄ 6, which corresponds to
the minimum of this potential. The parameter of interaction between particles of different types was assumed to be
equal to ε12 = (ε11

0 ε22
0 )1 ⁄ 2. The width of a pore changed from 3 to 25 monolayers. It was assumed that the radius of

the adsorbate–adsorbent interaction potential is equal to three and, therefore, sites are occupied equivalently, beginning
with the fourth monolayer. The structure of a fluid was simulated by a lattice, in which the number of nearest neigh-
bors was equal to 12.

The equilibrium characteristics of a binary mixture are presented in Fig. 1. Figure 1a and b presents local de-
grees of filling, with argon and krypton atoms, of different monolayers for five vapor compositions at a constant gross
density of a mixture (θ = θ1 + θ2 = 0.25 and 0.75). The calculations were performed for different molar fractions of
the second component γ = P2

 ⁄ P (here, P = P1 + P2); the numbers of monolayers are plotted on the abscissa. Figure
1c and d presents the average partial isotherms for different molar compositions γ of the mixture and different values
of the pore width H.

Since the walls of a slot-like pore are identical, the curves of distribution of the mixture components over the
cross section of the pore, shown in Fig. 1a and b, are symmetric relative to its center. Figure 1a corresponds to the
case where the total occupation is relatively small (θ = 0.25): both components are concentrated near the walls and the
central part of the pore is occupied to a much smaller degree. Krypton atoms are attracted more strongly; therefore, in
the absence of argon, their concentration in the surface layer is higher (curve 5) than the concentration of the pure
argon (curve 1). As the fraction of the second component γ increases, the concentration of the first component near
the wall decreases and the concentration of the second component increases. The potential of the wall influences three
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monolayers, and the contribution of this potential to the filling of the fourth and fifth monolayers is small. All curves
have a similar shape with a minimum concentration at the center of the pore.

In the case where a larger volume of a pore is filled (θ = 0.75), the distribution of the mixture components
is more complex. The concentration of the pure components (curves 1 and 5′) is minimum at the center of the pore.
However, in this case, the concentration of the components at the center of the pore differs from their surface concen-
tration by a much smaller value. As in the previous case, the potential of the wall influences three monolayers on each
side of the pore. Krypton, introduced into mixtures, accumulates predominantly near the wall. It displaces argon from
the surface layer; therefore, the distribution of argon over the cross section of the pore has maxima in the region of
the second or third monolayers, while the krypton distribution in layers decreases monotonically from the wall to the
center of the pore (as in Fig. 1a).

The degree of filling of each monolayer increases with increase in the total pressure (Fig. 1c). The surface
monolayers are filled first, and then the second, third, and other layers are filled (the counting is done from the wall
of the pore). Since the attraction of krypton is stronger, all of its partial isotherms are shifted toward smaller values
of the total pressure as compared to the partial isotherms of argon. The influence of the width of a slot-like pore on

Fig. 1. Equilibrium characteristics of adsorption θf
i(P) of argon atoms (i = 1)

and krypton atoms (i = 2) in a symmetric slot-like graphite pore of width ten
monolayers (1 ≤ f ≤ 10) obtained for five vapor compositions: γ = 0 (1), 0.333
(2), 0.5 (3), 0.666 (4), and 1.0 (5); 1–4) argon; 1′–5′ krypton; a) distribution of
mixture components over the cross section of a pore at θ = 0.25 (curve num-
ber corresponds to variant γ); b) distribution of mixture components at θ =
0.75; c) average partial isotherms θi(P) of argon and krypton as functions of
the total vapor pressure P for vapor mixtures of different composition γ; d) av-
erage partial isotherms of argon and krypton as functions of the total vapor
pressure P for pores of different width (H = 5. 8, 11, and 25 monolayers).
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the average partial isotherms of the mixture components is demonstrated in Fig. 1d. The partial degrees of filling are
plotted against the total gas pressure P at γ = 0.5. The smaller the value of H, the larger the rate of filling of the pore
because of the influence of the attractive potential of the wall. A further increase in the width of the pore weakly in-
fluences the conditions of filling of its central part, on which the potential of the lattice does not have any influence.
In all cases, the degree of filling with krypton is larger than the degree of filling with argon.

Knowledge of the equilibrium distributions of the components of a molecular mixture is of great importance
in investigating the dynamics of various processes, in particular for analysis of its shear viscosity.

Thermal Rate of Molecular Motion. Since the local densities of molecules are distributed very inhomogene-
ously over the cross section of a slot in the case where the molecules are strongly attracted to its walls, it is necessary
that the representation of the molecular motion in the rarefied vapor regions in the central part of the pore agree with
the representation of the molecular motion in the dense liquid regions near the walls of the pore. Under these condi-
tions, it is difficult to use the mean free path of molecules, because this quantity for the liquid and vapor phases can
differ by four orders of magnitude. In the lattice model, instead of the mean free path, the probability of jump Wi(ρ)
of an ith molecule for a distance ρ is used: Wi(ρ) = Ufg

i (ρ)/θf
i. The mean thermal velocity of travel of molecules is

determined as wfg
i  = ρUfg

i (ρ)/θf
i.

To calculate the rate of jump of a particle, we used the Eyring transient-state model [26], in which molecules
shift as a result of the activation process of overcoming a potential barrier. Such a model for nonideal reaction sys-
tems, where a barrier is formed by the potentials of neighboring particles and the surface of a solid body, is described
in [12, 27–29]. At the state of equilibrium, the quantity Ufg

i  is equal to

Ufg
 i

 (ρ) = Kfg
iv

 (ρ) Vfg
iv

 (ρ) ,   Vfg
iv

 (ρ) = θfg
iv

 (ρ) Λfg
i

 (ρ) ,   θfg
iv

 (ρ) = θfg(1)
iv

 (1) ∏ 

ξ

tξξ+1
 vv

 (1) , (2)

where Kfg
iv(ρ) = (8/(πmiβ)1 ⁄ 2 exp [−βEfg

iv(ρ)]/4ρ. The quantity Efg
iv(ρ) differs from zero (for the cells located at a large

distance from the wall of the pore, Efg
iv(ρ) = 0).

The concentration dependence of the rate of molecule migration is determined by the cofactor Vfg
iv(ρ), which

accounts for (1) the probability of realization of a free path θfg
iv(ρ) from an fth cell to a gth cell of length ρ (to avoid

its blocking by other molecules) and (2) the influence of the lateral interactions of the neighboring molecules located
around this path on the probability of a jump along it (these interactions are determined by the nonideality function of
the system Λfg

i (ρ)). The function θfg
iv(ρ) is expressed in terms of the probabilities of realization of the sequence of free

cells g(1), g(2), ... , g B g(ρ) forming a given path. The number of cofactors for ξ is equal to (ρ − 1). (For ρ = 1, the
cell g(1) is finite.) The function Λfg

i (ρ) has the form [12, 27–29]

Λfg
iv

 (ρ) = ∏ 

r=1

R

 ∏ 

ωr=1

πr

      ∏ 

h2m(ωr)

     ∑ 

j=1

v

 
θfh

ij
 (r1) θgh

vj
 (r2)

θf
i
 θg

v
 θh

j
 Efgh

ivj
 (ωr) , (3)

Efgh
ivj

 (ωr) = exp 



β δεfh

ij
 (r1) + δεgh

vj
 (r2)




 ,   δεfh

ij
 (r) = εfh

∗ij
 (r) − εfh

ij
 (r) .

The dimensionless parameter α = εfg
∗ij(r)/εfg

ij (r) was used in the calculations. The distance from an hth site to
an fth site is equal to r1 and the distance from an hth site to a gth site is equal to r2. The symbol ωr characterizes
the position of an hth site through the angle formed by the line connecting a pair of "central" fth and gth sites and
the line connecting the hth site with the center of the portion of the fg line positioned at a distance r from one of the
two central fth and gth sites; m(ωr) is a set of neighboring sites with fixed values of r and ωr.

In the absence of lateral interactions, formula (2) has the form Ufg
i (ρ) = Kfg

ivθf
i(1 − θg)ρ. Away from the walls

of pores, the constant Kfg
iv(ρ) = (8/πmiβ)1 ⁄ 2, i.e., it is the average thermal velocity of travel of molecules in the gas

phase [30].
Shear-Viscosity Coefficient. The shear viscosity of a fluid was calculated using a modified model [10] con-

structed by extending the Eyring model [26] to the whole range of fluid densities. In the model obtained, formulas (2)
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and (3) are used. (Recall that the initial Eyring model, in which it is assumed that a liquid has a cellular structure free
of vacancies, correctly defines the exponential dependence of the shear viscosity of a liquid on the temperature; how-
ever, this model cannot be used for rarefied fluids.) The shear viscosity coefficient of a mixture of spherical molecules
ηfg, corresponding to a shift of the fluid in a gth cell relative to the fluid in an fth cell, is defined as

ηfg = 






 ∑ 

j=1

s−1

xj 

ηfg

j 

−1






−1

 ,   ηfg
j

 = θf
j ⁄ Ufg

j
 ,   xf

i
 = θf

j ⁄ θf ,   θf = ∑ 

i=1

s−1

 θf
i
 . (4)

Fig. 2. Local coefficients of shear viscosity ηfg in a slot-like carbon pore of
width ten monolayers: a) normalized concentration dependences of the coeffi-
cients ηfg of an equimolar mixture of argon and krypton (XAr = 0.5) as func-
tions of the total density of the mixture at α11 = 0.1: the curves correspond to
the following pairs of neighboring cells in layers: fg = 11 (1), 12 (2), 21 (3),
22 (4), 23 (5), 32 (6), 33 (7), 34 (8), 43 (9), and 55 (10); the profiles of the
coefficients ηff along the cross section of a pore at θ = 0.25 (b) and 0.75 (c):
XAr = 0 (1), 0.333 (2), 0.5 (3), 0.666 (4), and 1.0 (5).
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At small densities, this expression is transformed into the Wilke and Brokaw approximations [31] for locally inhomo-
geneous gas mixtures. For pure components, it shows that the quantity η depends on T1 ⁄ 2 and linearly depends on the
density; in the case of large densities, this quantity exponentially depends on the temperature as in the traditional Eyring
model [26]. The indicated formula for pure components was tested in calculating the volume viscosities of the gases Ar,
He, H2, N2, NH3, and CO2 [32, 33]; the data obtained were in good agreement with the experimental ones [34, 35].

It is seen from (4) that the viscosity of a fluid depends substantially on the local distributions of its compo-
nents over the cross section of a pore and on the direction of its motion. The viscosity of flow-density fluids depends
linearly on the degree of filling of the pores, as in the case of an ideal gas, and, when θ increases, the ratio between
the quantities ε and ε∗ begins to influence the dependence η(θ).

Calculations were performed for the simplest case of jumps of molecules for a distance ρ = 1 to the nearest
neighboring cells. Below are given the concentration dependences of the shear-viscosity coefficient for the following
molecular parameters: H = 10λ, R = 1, α = 0.6, and α11 = E11

iv (1)/Q1
i  = 0.1 (this value corresponds to a small height

of the activation barrier for surface jumps). The temperature of the system is equal to T = 1.38TAr
c , where TAr

c  is the
critical temperature of the argon in a slot-like, argon–graphite pore of width H, which provides a one-phase state of
the mixture in the pore in the case where argon is completely displaced by krypton (for which T = 1.06TKr

c ). The
value of the parameter α used corresponds to the experimental data [34, 35] on the shear-viscosity coefficient of
argon, obtained for a wide range of its densities from a rarefied gas to a liquid. All the curves were normalized to the
shear-viscosity coefficient of argon in the gas phase.

The concentration dependences of local shear-viscosity coefficients are shown in Fig. 2a for a slot-like pore
of width 10 monolayers. They characterize the stagnation of a flow (dissipation of its momentum) passing through a
pore; their values are substantially dependent on the direction of a local flow and the distance to the wall of the pore.
The argon–carbon system is characterized by a fairly strong attraction of molecules to the walls of the pore. The po-
sition and shape of curves 1–3 in the near-wall region are determined by the quantities Q1

1 and E11
1v (through the ratio

α11 = E11
1v ⁄ Q1

1). Curve 4 corresponds to the viscosity in the second layer. In the central region of the pore (curves 5–
10), the viscosity increases as the pore is filled. It changes from the value corresponding to the gas phase to the value
corresponding to the liquid phase (the concentration dependences were normalized to the corresponding value of η0 for
the bulk phase of argon at θ = 0 and Q1

1 = 0). The distributions of components over the layers were calculated for a
definite fraction (XAr = 0.5) of components in the pore (unlike the dependences in Fig. 1, obtained for definite frac-
tions of components in the vapor phase γ). The calculations have shown that the viscosity of a fluid depends substan-
tially on the local distributions of its components over the cross section of a pore and the direction of the fluid
motion. The attractive potential of the wall of a pore influences the near-wall regions and, in doing so, increases the
viscosity coefficient.

Fig. 3. Concentration dependences of the local viscosity coefficients of an
argon–krypton mixture with a varying composition for the pairs of neighboring
sites 11 (1–5), 22 (6–10), and 55 (11–55) in different monolayers of a graph-
ite pore of width ten monolayers: XAr = 0 (1, 6, 11), 0.25 (2, 7, 12), 0.50 (3,
8, 13), 0.75 (4, 9, 14), and 1.0 (5, 10, 15).
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Figure 2b and c presents the profiles of the shear-viscosity coefficients of argon–krypton mixtures of different
molar compositions in a pore of width H = 10 monolayers (corresponding to the profiles of the partial degrees of fill-
ing in Fig. 1). The coefficient ηff decreases as the distance between a layer and the wall increases and increases mono-
tonically with increase in the total degree of filling.

Figure 3 presents dependences of the local coefficients of viscosity of argon–krypton mixtures of different
compositions in the first surface layer (curves 1–5), in the second near-surface layer (curves 6–10), and at the center
of a carbon pore of width 10 monolayers (curves 11–15). When the fraction of argon decreases and the fraction of
krypton increases, the viscosity of a mixture increases because the fractions of its components in the surface monolayer
and at the center of the pore change. Of significant importance is the fact, demonstrated by the distributions of the
concentrations of components in Fig. 1, that krypton displaces argon to the central part of the pore because it is ad-
sorbed more strongly by the surface.

The influence of the width of a pore on the local viscosities in the first surface layer (curves 1–3), in the sec-
ond near-surface layer (curves 4–6), and at the center of the pore (7–9) is shown in Fig. 4. For comparison, curve 10,
corresponding to the volume viscosity of a mixture with an equimolecular composition XAr = 0.5, is dotted. The gen-
eral regularities obtained for a mixture of constant composition are close to the regularities obtained earlier for one-
component fluids [36]. The shear viscosity of the adsorbate in the central layer depends relatively weakly on the width
of a pore, even though the influence of this quantity cannot be completely ignored. The viscosity in the surface layer
increases with increase in the pore width H. This is explained by the fact that the degree of filling of the surface layer
θ1 increases with increase in H at a constant total density of the mixture θ in a pore. (Recall that the results of cal-
culations performed within the framework of the lattice-gas model considered are in good agreement with the analo-
gous data on the concentrations distributions and the shear viscosity of one-component fluids in slot-like pores of
width 4 and 18 monolayers [37], obtained using the method of nonequilibrium molecular dynamics and on the basis
of the continual kinetic theory.)

The molecular approach [10, 11, 14] for calculating the shear viscosity of mixtures allows one to make a mo-
lecular interpretation of their sliding friction. The coefficient of sliding friction β1 of mixtures is involved in hydrody-
namical equations used for calculating the velocities of their flows near surfaces [38, 39]. Recall that the coefficient
β1 is determined from the ratio between the tangential force acting on a unit surface and the relative velocity of a
flow near a solid wall: β1u = −η∂u ⁄ ∂r

r=R
. The ratio η ⁄ β1 = λ has the dimensions of length.

It was noted in [36] that the coefficient of sliding friction can be determined on the basis of the experimen-
tally verified molecular notions on the surface mobility of molecules and surface flows [2, 5]. The results of calcula-
tion of the contributions of the "surface" and "volume" transport of molecules to the common flow of labeled
molecules along the axis of a pore (in the absence of a hydrodynamic flow) presented in [20] point to the fact that

Fig. 4. Concentration dependences of the viscosity coefficients of an argon–
krypton mixture at XAr = 0.5 in the surface layer (η11, curves 1–3), in the
second near-surface layer (4–6), and at the center of a pore (η55, curves 7–9)
for pores of different width H ⁄ λ = 20 (1, 4, 7), 10 (2, 5, 8), and 6 (3, 6, 9);
10) bulk phase.
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the surface mobility of molecules plays an important role in their thermal motion characterized by the self-diffusion
coefficient. The surface flow of molecules is predominant in the case where molecules are strongly attracted to the
walls of a pore and the density of the fluid filling the pore is low; this flow remains commensurable with the volume
transport of molecules as long as the surface monolayer is filled. When the walls of a pore possess a repulsive poten-
tial, the role of the surface transport of molecules increases with increase in the degree of filling of the pore. The ef-
fects of sliding were considered earlier only for rarefied gases. Unlike the rarefied gases, where the specular reflection
of molecules from the walls of a pore plays a decisive role, the sliding effect in dense fluids is determined by the
surface mobility of molecules.

According to [36], β1 = η11
 ⁄ λ, where indices 11 correspond to the near-surface monolayer. Therefore, the

above-indicated normalized values of η11 characterize the coefficient of sliding friction accurate to a constant size of
a monolayer λ. As a result, the velocity of a flow in the near-surface layer u = −(λβv) ∂u ⁄ ∂r

r=R
, where βv =

ηtt
 ⁄ η11 (the indices tt denote the central region of a narrow pore or the volume viscosity in wide channels). In the

case of a strong adsorbate–adsorbent attraction or a decrease in temperature, the ratio η11
 ⁄ ηtt sharply increases, which

leads to an increase in the coefficient β1 and a decrease in the velocity of a flow near the wall of a pore.
For a mixture, of importance is the activation energy of the surface migration E11

iv  of both components. Figure
5 shows local viscosities of an equimolar mixture in the surface layer for different activation energies of the surface
migration of the mixture components (in this case, the values of α11 for argon and krypton are assumed to be equal).
For comparison, the viscosity of the mixture at the center of a pore is given. The difference between the logarithms
of the local viscosities on the surface and at the center of the pore (the logarithm of the ratio βv = η11

 ⁄ η55), i.e., the
difference between the corresponding dashed lines, behaves nonmonotonically when the total density of the mixture in-
creases. However, the main feature of the dependence βv(θ) is that it does not change with increase in the degree of
filling of a pore with the liquid phase when θ → 1 (in this case, the densities corresponding to the solid state of the
mixture are not considered), and its value characterizes the intensity of sliding of the liquid near the solid wall. The
smaller the value of E11

iv , the larger the contribution of the surface flow of molecules of each component to the com-
mon "sliding" flow of molecules. The case where α11 = 0.1 corresponds to small migration activation energies (char-
acteristic of the migration of metal atoms on their own ideal faces of single crystals), while the value of α11 = 1
corresponds to high activation energies, at which molecules break the bond with a substrate and jump to the neighbor-
ing sites. Accordingly, the curves βv(θ) shift toward larger values with increase in α11.

The appearance of maxima on the curves βv(θ) is explained by the difference between the rates of increase in
the coefficients of shear viscosity of a fluid near the wall of a pore and in the bulk phase. At a fairly high density of
the bulk phase, the rates of increase in the viscosity of the fluid with increase in θ become equal in both systems.
However, at one and the same value of θ, the central part of the pore is more rarefied (because of the increased den-

Fig. 5. Influence of the activation energy of the surface molecule migration on
the viscosity of the surface layer η11 at XAr = 0.5 and α = 0.60: α11 =
E11

iv  ⁄ Q1
i  = 0.1 (1), 0.333 (2), 0.666 (3), and 1.0 (4) (solid lines); curve 5 cor-

responds to the shear-viscosity coefficient η55 at the center of a pore; curves
1–4 (dashed) represent the corresponding ratios η11

 ⁄ η55 (right-hand axis).
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sity on the walls) than the bulk phase; this being so, the viscosity of the fluid in the bulk increases at a larger rate
than its viscosity in the pore. (Note that not only the possibility of such nonmonotone behavior of βv(θ), but also the
sliding effect in the liquid phase were practically not considered earlier because there was no unified approach to the
study of the gas and liquid phases.)

CONCLUSIONS

1. Calculations perfumed for slot-like pores have shown that the shear-viscosity coefficients of the components
of a binary mixture subjected to strong adsorption fields are anisotropic in character and depend substantially on the
distance between the fluid region considered and the wall of a pore and on the direction of the momentum transfer.
They change especially strongly near the walls of the pore. At the center of the pore, the quantity ηtt depends on the
potential of the wall and on the total concentration of the mixture.

2. It has been shown that the traditional notions of the constancy of the dynamic characteristics of molecules
in narrow pores [2–4] are wrong. Experimental data should be analyzed with allowance for the fact that the dynamic
characteristics of an adsorbate in narrow pores depend fairly strongly on its concentration because of the influence of
both the potential of the walls of the pores and the intermolecular interaction.

3. The molecular approach [10, 11, 14] allows one to represent various fluid flows containing liquid and/or
gas phases in complex porous systems and to make molecular interpretation of their sliding friction. The effect of slid-
ing of a dense-fluid flow is due to the surface migration of molecules. The energies of binding of components of a
mixture to the surface determine the surface composition of the mixture, and the energies of activation of the surface
migration of the mixture components determine the probabilities of elementary jumps of components in the process of
their surface migration.

This work was carried out with financial support from the Russian Basic Research Foundation (grant 03-03-
32072).

NOTATION

af
i, local Henry constant of an ith molecule located at an fth site; af

i0, preexponent of the Henry constant of
an ith molecule located at an fth site; Ci, concentration of ith molecules; Efg

iv(ρ), activation energy of jump of an ith
molecule from an fth site to a free gth site positioned at a distance ρ, kJ/mole; Efgh

ivj (ωr), energy contribution of a jth
molecule located at an hth site positioned at a distance equal to the radius r of the coordination sphere of a pair of
"central" fth and gth sites with a coordination ωr to the nonideality function of jump of an ith molecule from an fth
site to a gth site; f, number of a monolayer in a slot-like pore and the type of the site located in this monolayer;
Ff, normalized fraction of fth sites, 1 ≤ f ≤ t; Fi and Fi

0, statistical sums of the states of ith molecules in the lattice
system and in the gas; H, number of monolayers (width of a slot-like pore); i, type of a molecule; k, Boltzmann
constant; Kfg

iv(ρ), rate constant of jump of an ith molecule from an fth cell to a free gth cell positioned at a distance
ρ in an unfilled lattice; mi, mass of an ith molecule; m(ωr), set of neighboring sites with definite values of r and
ωr; N, number of cells in a system; Ni, number of ith molecules; Pi and P, partial pressure of ith molecules and the
total pressure in the system; Qf

i, energy of binding of an ith molecule located at an fth site of a layer to the walls
of the pore, kJ/mole; R, radius of the channel of a pore (for a slot with R = H/2), m; Rm, radius of the intermo-
lecular interaction potential related to λ; r, distance related to λ; s, number of components of a mixture; t, number
of different-type sites in the system; T, temperature; Ti

c, critical temperature of an ith component; tfg
ij (r), conditional

probability of location of a jth molecule at a gth site positioned at a distance r from an ith molecule located at an
fth site; u, velocity of a flow, m/sec; ui(f), potential of interaction of an ith molecule with the wall of a pore,
kJ/mole; Ufg

i (ρ), average rate of jump of ith molecules from an fth cell to a free gth cell positioned at a distance ρ;
Vfg

iv, concentration component of the rate of jump of an ith molecule from an fth cell to a free gth cell; Vp, volume
of a pore; v0, volume of a cell; Wi(ρ), probability of jump of an ith molecule to a distance ρ; wfg

i , average thermal
velocity of travel of ith molecules between the fth and gth sites; xf

i, mole fraction of the jth component at an fth site;
XAr, mole fraction of Ar in a pore; z, number of nearest neighbors; zfg(r), number of neighboring sites in a gth layer
positioned at a distance r from the site located in an fth layer; α, dimensionless parameter equal to ε ⁄ ε∗; α11, dimen-
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sionless parameter equal to E11
iv (1)/Q1

i , characterizing the height of the activation barrier for surface jumps of the ith
component between the nearest sites; β, reciprocal of the thermal energy kT−1, mole/kJ; β1, coefficient of sliding fric-
tion, kg/(m2⋅sec); βv, dimensionless ratio between the shear-viscosity coefficients of the surface and central layers of a
pore; δεfh

ij (r), difference between the quantities εfh
∗ij(r) and εfh

ij (r); εi, interaction potential between the ith adsorbate and
the adsorbent, kJ/mole; εij, Lennard-Jones interaction potential between the ith and jth components of a mixture,
kJ/mole; εij

0, energy parameter of the function εij, kJ/mole; εfg
ij (r), parameter of interaction of an ith molecule located

at an fth site with the neighboring jth molecule located at a gth site positioned at a distance r, kJ/mole; εfh
∗ij(r), pa-

rameter of interaction of the activated complex of migration of an ith molecule from an fth site to a free gth site po-
sitioned at a distance r with the neighboring jth molecule in the ground state located at an hth site, kJ/mole; γ, mole
fraction of the second component of a binary mixture in the gas phase; λ, size of a cell and width of a monolayer
(D1.12σ), m; Λf

i, nonideality function of an adsorption system for ith molecules at an fth site; Λfg
i (ρ), nonideality func-

tion of an adsorption system for jump of an jth molecule from an fth site to a free gth site; η, viscosity of liquid,
N⋅sec/m2; ηfg, local coefficient of shear viscosity of the mixture located between the fth and gth sites, kg/(m⋅sec);
ηbulk, viscosity of argon atoms in the volume of the gas phase at a temperature considered, kg/(m⋅sec); ηfg

i , partial
contribution of a jth molecule to the shear viscosity; ρ, length of a molecule jump related to λ; σij, shortest distance
between the ith and jth components of the mixture, m; σ, average value of the quantities σij; θ, degree of full filling
of a pore (0 ≤ θ ≤ 1); θi, degree of partial filling of the volume of a pore with ith molecules; θf, local full filling of
an fth site; θf

i, degree of partial filling of an fth monolayer with ith molecules; θfg
ij (r), total probability that the neigh-

boring ith particles located at an fth site and jth particles located at a gth are separated by a distance r; ωr, orientation
of a site positioned in the rth coordination sphere of the "central" pair of sites. Subscripts: i, j, types of molecules; v,
vacancy; c, critical; f, g, h, types of sites; m, molecular; p, pore; v, velocity.
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